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MEMORANDUM FOR FILE

Under the existing Apollo flight plan a single burn
deboost 1s used to place the spacecraft into a lunar parking
orbit which passes over the landing site. Prior memorandums
(Reference 1 and 2) have proposed a two burn deboost, having
one burn to perform a partial plane change and establish a
circular parking orbit and a second burn to complete the plane
change. A two burn deboost can be used to either maximize
lunar accessible area for a fixed AV or to minimize the total
AV required to reach a given lunar parking orbit. In the
referenced studies a limited number of computer runs were made
from which the empirically optimum solution was chosen. This
memorandum advances methods for solving both cases analytically.

INTRODUCTION

ORBITAL MECHANICS

Figure 1 shows a schematic sketch of a two burn de-
boost. From a hyperbola in the initial plane, the a-plane,¥*
the CSM deboosts into a circular parking orbit in the Bl—plane

performing a plane change of pq with a velocity change of AVl.
After a flight of ¢ degrees in the Bl—plane a second burn is

made to place the spacecraft in a circuler parking orbit in

the gZ—plane, after a plane change of P with a velocity change
of AV2. The inclination of the sg—plane above the o-plane

is denoted as 12. A is the arc distance in the g-plane between
perilune on the hyperbola and the node of the 32—plane and

a=-plane. The true anomaly of the hyperbolic deboost polint is
denoted as . Figures 2 and 3 define AVl and AV2 in terms of

circular orbital velocity (VC), hyperbolic velocity at deboost
(VH) and the angles py, p,, and y, the flight path angle at
the first burn.

¥ _
Table I contains a glossary of symbols and definitions.
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ABSTRACT

Under the existing Apollo flight plan a single burn
deboost, providing a combined velocity and plane change, is
used to place the spacecraft into a lunar parking orbit which
passes over the landing site. In the "two burn deboost", an
additional burn is performed in lunar parking orbit before LM
descent for the purpose of adjusting the orbit plane. Proper
combinations of plane changes on the first and second burns
will, in general, result in lower SM propellant costs for the
two burn deboost. While utilizing multiple lunar orbit inser-
tion burns, the technique gives these propellant savings without
sacrificing any of the advantages of the free return flight plan.

This memorandum describes an efficient method for
analytically calculating the optimum combination of the plane
changes for the two burn case by an iterative technique.
Methods are presented for solving the two basic mission anal-
ysis problems: (1) the calculation of the maneuvers required
to reach a specified lunar parking orbit (passing over the
lunar landing site) with minimum propellant costs and (2) the
calculation of the maximum lunar area accessible for a fixed
propellant budget. Quantitative results are presented which
show that the greatest savings are realized for cases wherein
the parking orbit/approach hyperbola node is more than 10°
to 15° from hyperbolic perilune; such geometry arises most
frequently for lunar landing sites in the central region.

Modifications to existing targeting programs in
order to accommodate this technique are believed to be small.
No convergence difficulties have been identified with the
iterative technique that has been employed.
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Figures 1, 2, and 3 assume an off-perilune deboost
into parking orbit. Off-perilune deboosts are used in the
case of a single burn to move the line of nodes between the
hyperbolic plane and the final parking orbit plane. Such
movement of the node results in a geometric efficiency which
can be used to minimize propellant requirements even though the
flight path angle at deboost is non-optimum. For this two
burn deboost, an off-perilune maneuver is shown to also result
in reduced propellant requirements.

THE MINIMUM AVT PROBLEM

When minimizing the total AV required to reach a
specified lunar orbit plane from the specified hyperbola,
the 82—plane is fixed and hence ) and 12 are known. The

Bl—plane which results in minimum total AV must be determined.
The Bl-plane can be completely specified by two independent
parameters, the node f and the inclination Py relative to the

hyperbola plane (a-plane). Hence the geometry of the solution
1s completely specified by the two parameters f and Py when

A and i2 are known. One may express this relationship func-

tionally as

AVg = Fy (f, 1) (1)

Since Py and f are independent the necessary conditions that
AVT possess a minimum or a maximum are

BFl oF
ryenliie 0 and —— = 0. (2,
P of

For algebraic convenience the problem has been for-
mulated in terms of seven variables AVT, AVl, AV2, P15 Poos f

and ¢; A and 12 are specified. The plan of attack will be to
obtain relationships among these varilables which allow the

3)
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analytic determination of BFl/apl and aFl/af; an additional

expression for AVT in terms of 015 f and ¢ is required.

02)

Starting with an equation for total avV,

AV, = AV, + AVZ, 4)

then from Figure 2 and the law of cosines

2 .2 2
AVl = VC + VH - 2VCVH Cos py COS v, (%)
where
_ e sin f
tan v = 7255 T ° (5a)
_ =-r cos f - V(r cos f)2 - ba(r-a) ¥
e = P (5b)
and
_ - U
H r

%
Equation (5b) results from the solution of the conic

a (1 - e2)
1+ e cos T

equation, r = The choice of the negative root

in the quadratic solution is unambiguous since the positive
root would result in negative eccentricities.
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In the above equations u is the gravitational constant of the
meon and r is the radius of the lunar parking orbit. From
Figure 3,

AV, = 2V, sin (p,/2). (6)

From the law of sines

sin eo sin i2

sin (r=f)  sin ¢ > °F

sin p, sin ¢ = sin i, sin (A=F). (7

A fifth equation can be c¢cbtained from Figure 1 and
a law of spherical trigoncmetry (Reference 3, p. 12).

cos (A-f) cos py = sin (A-f) cot ¢

(8)

+ sin o1 cot i,
[

The required sixth and seventh equations are provided by the
conditions imposed by equations 2 and 3 which can now be

expressed in terms of the variables AVT, AVl, AV

and A. Equations (9) through (21) develop explicit partial
derivatives for aAVT/ap1 (Equation 13) and aAVT/af (Equation 21)

ox) 91: 02, fy ¢, i2

by successive differentiation of Equations (4) through (8) and
appropriate algebraic substitution. An expression for the
partial derivative of AVT with respect to o, may be formed by



BELLCOMM, INC. - 5=

taking the partial of both sides of Equation (4).

SAVT AV BAV2

1

= +
e Tl Tx (9)

The partial of Equation (5) divided by 2AV1 and the partial
of (6) are

34V, _ VoV ;.
AV, Py cOS ¥

3pl

AV dp
2 2
VC cos (p2/2) —_

501 L1

Substituting these equations in (9) and dividing through by
VC gives

AV V., sin p., cos vy 3p
1 T H 1 2
= = + cos (p,/2) — (10)
VC Bpl AVl 2 Bpl
Taking the partial derivative of Equation (7) with respect
to 01:
ap 5
sin ¢ cos p, — + sin o, cos ¢ 0 - 0,
2 3p 2 3p
1 1
and solving for 802/301,
ap
—2 = - tan p, cot ¢ 2 | (11)
Bpl 2 Bpl
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gives an expression for the partial of 05 with respect to
Py~ In order to calculate a¢/apl, it is necessary to take

the partial derivative of Equation (8) with respect to 015

- cos (x=f) sin p; = - sin (x-f) CSC2 ¢ %%“
1

¥
+ i
cot 12 cos °q

Solving for a¢/801,

cos py cot i2 + cos (A-f) sin 07

= > N (12)
sin (A=f) csc™ ¢

39
Bpl

gives an expression for the partial of ¢ with respect to -

Substituting (12) into (11) and then substituting (11) back
into (10) gives an explicit expression for aAVT/apl, the

sixth required equation:

1 aAVT C o - VH sin p, cos vy ) (13)
VC dp AV1

cos (p2/2) cos ¢ tan o, (cos py cot i, + cos (x=f) sin pl)

csc ¢ sin (A-f)

The next step is to develop the seventh equation,
aAVT/af, by taking the partial of Equation (4) with respect

to f,

*
Note that this partial derivative 1is obtalned by observing
that 01 and f are independent; hence af/apl = 0.
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BAVT _ EAVl N 3AV2 (14)
o f 3f of
The first term in Equation (14) is obtained by taking the
partial of Equation (5) divided by 2AV1,
ANV, V.,V
1 c U R 9
S = —5 ¢os pq sin y 3% (15)
ot 1
The partial or PBgquation (Ya) with respect to f yields
5 3e
1 3y _ e~ + e cos f + sin f Jf
2 3f 2
cos” y (1 + e cos f)
Multiplying by cosey and using Equation (5a)
3y sin2 Y cos T sin f 3e
af = ——“—_‘. > 1+ ——e + P —8—1; . (16)
sin f e

The remaining unknown,

de/3f, is determined by taking the partials
of Equation (5b),

2

3¢ _ r sin f r~ cos f sin f

af 2a

(17)

2a Vrﬁ cos°f - ha (r-a)

Substituting Equations (17) and (16) into (15) then
gives an explicit equation for aAvl/af. One can now proceed

to a determination of the second term in Equation (14) by taking
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the partial derivative of Equation (6) with respect to f,

2 P
3T = VC cOs (p2/2) —“5? . (18)

Taking the partial of Equation (7) with respect to f,

ap
cos o, sin ¢ —5% + sin p, COS ¢ %% = - sin 12 cos (a=f),

and solving for sz/af,

C _ : 3¢
sin 1, cos (A-T) + sin p, cos ¢ =%

-7 cos o, sin ¢ ’ (19)

@
©
no

|

@
Hh

gives an expression for the partial of o with respect to f.
The partial of Equation (8) with respect to f,

sin (x-f) cos py = - csc” ¢ sin (x-f) %% - cot ¢ cos (A-T),

can be reformulated to give an expression for 3¢/5F,

%% = _ sin® ¢ cOS p; — cos ¢ sin ¢ cot (A=f) . (20)

Substituting (20) and (19) into (18) gives 3AV,/3f; then sub-

stituting (18) and (15) into (14) gives an expression for the
partial of AVT with respect to f:
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1 38Vp Vg sind y cos f , sin f r sin f
v SN cCos p s 1 + + e +
C 1 sin® f € e a

sin i2 cos (A=1)

Cos o, sin ¢

r2 cos f sin f

+ cos (p2/2) -

2a V r2 cos2 f - 4a (r-a)

tan o, cos ¢ (sin ¢ cos py * cos ¢ cot (x=£)) = 0. (21)

Equations (13) and (21) then along with Equations (4) through (8)
are sufficient to uniquely determine the seven unknowns: AVT,

AV 5 and making initial
assumptions for 0 and f, ¢ can be found from Equation (8)

13 AV2, P1s Poo f, and ¢. Knowing A and i

_ cos (A=) cos py — sin o, cot i,
cot ¢ =
sin (A-1)
or inverting
¢ = arctan sin (x-1) o .
cos (A-f) cos py — sin p; cot i, » 0° < ¢ < 180 (22)

and p, can be calculated from Equation (7)

sin 1. sin (A=)
= arcsin 2 (23)
P2 sin ¢

and the two burn maneuver required to proceed from the a-plane
to the Bz—plane is determined.
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Having these values, AVl, AV2, and AVT can be calculated from
Equations (4) through (6) and the examination for optimality
can be made.

Substituting values for AVl, P1s Pos f, and ¢ back in
Equation (13) and Equation (21), values for aAVT/ap1 and BAVT/af
can be obtained. If the partial of AVT with respect to 04 (or f)
turns out to be positive, Py (or f) is too large; if it is nega-~
tive, oy (or f) is too small. Using this information and succes-
sive calculations, oy and f can be found such that the partials
of AVT with respect to Y and f are sufficiently close to zero.

It should be noted that this process inherently approaches the
minimum of AVT rather than the maximum.

One recursive technique, that has proven to converge
rapidly, simply assumes AVT is a second order function of both

o and f. Starting with a value of 0 and two 1nitial guesses

for f (fl and f2) and calculating the partials of AVT with respect
to f at both fl and f2, the slope of the line passing through
these two points can be calculated¥,

BAVT _ BAVT
Bfl 8f2
fl - f2

This slope can be used to calculate a value of f for which the
value of BAVT/Bf would be zero if aAVT/Bf were truly linear

in f:

*
For notational simplicity, the partial derivative of AVT

with respect to f at f = fi will be expressed as aAVT/Bfi.
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BAVT r. - f

1 2

f,. = f, -

3 2 af2 aAVT ] BAVT
afl af2

This value, f3,gives a partial derivative of AVT with respect
to f that 1s closer to zero than either aAVT/afl or aAVT/afg.
The nth calculationr for f would be

BAVT f - T

£ = _ n-2 n-1
n n-1 af |, 94Vy ] 34V,
afn—2 3fn—l

Since |f] < |A| for optimality, if a predicted |f| is greater
than |r|, f should be set to A. If a second prediction for |f
goes beyond |A|, the two burn off-perilune deboost reduces to a
one burn deboost for the assumed 09 Thus when aAVT/af = 0

exists, for any 6 > 0 a value of f can be obtained such that
|3aV,/3f] < 6; otherwise f is set equal to A.

Carrying forward the assumption that AVT is roughly
parabolic with f (or pl), insight into this two burn deboost

can be gained from Figure 4. This figure indicates schematically
the requirement for comparing [f| with [i]. When aVy (f) 1s

characteristic of Figure (4b), use of the predicted f will, in
the case represented by (4b), result in instability in the iter-
ative scheme.

We now proceed in a similar fashion to determine
BAVT/Bpl. Using the value of f such that |3AVT/af| < &, choose
a second value for Py and then use the previously described
method on o1 and the partial of AVT with respect to oy to find
a value of p, such that IBAVT/apll < §. Since [pl| < |i2|
for optimality, if a predicted value of ]p1| exceeds |i2| set
py to 1,5 and if a second |o;| exceeds |i,|, the two burn off-

perilune deboost reduces to a one burn deboost. For the wvalue
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of p, such that [daV,/dp,| < 6, the |34V,/8f| does not

necessarily have to be less than §.%¥ Using this new value
of Py f can be calculated by the iterative method such that

IBAVT/afl < 6. By such successive calculations, a value can

be obtained for p, and f such that [aAVT/af] < § and |8AVT/801|<
§.

For values of A less than about 20°, suggested initial
conditions for Py and f are 12 and X respectively, as this

initialization isolates immediately the cases where the single
burn 1s optimum. For larger values of A, initial conditions

of Py = f = i2 (1 - 5%) have been observed to result in favor-
able convergence.,

THE MAXIMUM LUNAR ACCESSIBILITY PROBLEM

When calculating the maximum lunar area accessible
for a fixed AVT**, i, assumes its maximum value. (This assertion

is proven by inspection of Figure 1. For any value of ), the
spherical area between the a-plane and the Bz—plane 1s maximized

for the maximum value of 12. This spherical area, in turn, 1is

just the lunar accessible area.) An equation analogous to
Equation (1) may be formulated for the accessibility problem:

1, = F, (f, pys ). (24)

*
Recall that although p, and f are independent, AV, 1is
1 T
dependent upon both.

*The techniques for such calculations are documented in
Reference 4. By this method, the AV allowed for getting into
lunar parking orbit is assumed. The AV and propellant required
to get out of the parking orbit and onto a transearth trajectory
can then be calculated. By iterative techniques the parking
orbit is adjusted such that the propellant requirements match
the propellant availability.
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Since P1s f and X are independent the necessary conditions
that 12 possess a maximum or minimum for a specified AVT are
then,

oF oF
2 _ 2 _ 2 _
7o 0 o T O gy = 0. (25, 26, 27)

|

In this case it 1s convenient to assume a fixed ) and carry

out a determination of the maximum 12 with respect to R and

f. This assumption results in no loss of generality as will

be discussed later. Equations (4) through (6) are applicable
to this problem. A fourth equation can be obtained from the

law of sines

sin oy sin 05

sin ¢ sin (i=f) ° or

sin p, sin (A-f) = sin p, sin y. (28)
1 2

A fifth equation can be obtalned from two equations from spherical
trigonometry (Reference 5, page 189 and Reference 3, page 12).

cos p, = cos i, cos py + sin 1, sin o, cos (A=1) (29)
and

—-cos (Aa-f) cos i, = sin (A-f) cot ¢ - sin i, cot oy (30)
Solving the first for sin i2, substituting this in the second

equation, and multiplying both sides of the equation by sin °q

cos (A-f) gives
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- cos2 (x=f) cos i, sin pq = sin (A=f) cos (A=-f) cot y sin 0y
- cos p, cot Py + cos 1, cos pq cot Py (31)

The necessary sixth and seventh equations, satisfying conditions
of Equations (25) and (26), may now be determined. Equations
(32) through (35) develop the necessary equations for aig/apl

and aiz/af.

The partial derivative of 12 with respect to °y is

formed as follows. The partial derivative of Equation (28)
with respect to ey is

ap
cos p, sin vy e + sin P, COS ¥ %%I = cos py sin (A-T). (32)
1

Take the partial of Equation (29) with respect to p; and solve
for 802/801.

& . . . — < 4 . .
s1in 12 cOs pl CcOSs 12 sin pl

ol
- cos 1, sin p, cos (Aa=1) EEI

- sin 12 cos pq cOS (r=1) / sin P




BELLCOMM, INC.

The partial of Equation
oy

is
apl

- 15 -

(30) with respect to oy solved for

3y 3l 2
33— = - COosS 12 cot o7 EE— + sin 12 csc o1
1 1
o1, 2
- cos (a=f) sin i2 Y. / (sin (ax-f) csc”™ y).
1
Substituting these last two equations back into Equation (32)
gives
cos py, sin ¢ ol
: sin 1, cos py 57— + cos 1, sin py
sin p 1
2
812
- cos i, sin p; cos (r=-1) EEI - sin 1, cos p, cos (x=1)
sin P, COS P 91 5
+ - Cos i2 cot °1 357 + sin i2 cse 01
sin (A=f) 0802 P Pl
8i2
- cos (A-f) sin i, — cos p, sin (x=-f).
2 apl 1
Solving this equation for Biz/Bpl,
9l
2 _ &
= 3 (33)
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where
G = cot 05 sin y (- cos 12 sin 0y + sin i2 cos py COS (A=F))
. .. 2 . .
sin p, cos ¢ sin” y sin 1
- 5 + cos py sin (A=1)
sin (A-f) sin 0y
and
H = cot o, sin ¥ (sin i2 cos p; - cos 12 sin o, cOS (a=£f))

sin Py cos ¢ sin2 v

sin (A-f) (cos 1

, cot p, + cos (r=f) sin 12),

gives an expression for the partial of i2 with respect to 0y
and supplies the sixth equation.

The partial of i2 with respect to f is formed in a

very similar manner. The partial of Equation (28) with respect
to f is

ap
cos p, sin y 57 + sin p, cos y %% = - sin py COS (a=1). (34)

The partial derivative of Equation (29) with respect to f,
solved for 3p,/3f, and the partial of Equation (30) with respect

to f, solved for 3y/3f, are

ap 312 o1

_ . . R . 2
= sin i, cos py —3F - cos 1, sin o, cos (rA=f)

of

@
=

- sin i, sin p, sin (A=T) / sin Py
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and

Q
[N
no

3y _ . _ _— _ ..
°T sin (A-f) cos i, cos (a-f) sin i,

|

—

E

91
- cos (A-f) cot ¢y - cos i, cot oq —3% /(sin (x-f) csc2 v) .

Substituting these equations into (34)

cos o, sin y 81, 21,
510 o, sin 1, cos p; —3% - cos 1, sin o, cos (r=1) 7
sin P cos Y
- sin i2 sin Py sin (Ax-f) + 5
sin (A-f) csc™ vy
812
sin (a-f) cos i, - cos (r-F) sin i, =7
3i2
- cos (A=f) cot y - cos i, cot pq 7 = - sin p, cos (a=1)
8i2
and solving for —3F
91
2 D
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where
D = —-| cot °s sin ¢ sin i2 sin 0y sin (i -f) - sin o, COS (x=f)
+ sin Py COS ¥ sin2 p (cot (A=f) cot y - cos i2)
and
E = cot p, sin y ( cos i, sin p, cos (A-f) - sin i, cos pl)

sin Po cos ¥ sin2 i/
+ Sin O (cos (A-f) sin i, + cos i, cot pl),

we obtain the necessary seventh equation, an expression for the
partial of i2 with respect to f.

The varilables are AVl, AV2, P1s Pps f, ¢, and 12.

» must be assumed for a solution but would normally be varied
through 360° to generate a total lunar accessibility map. Then
the known quantities are 1 and AVT. If pq and f are assumed

AV, 4&V,, and p, can be calculated from Equations (5), (4) and
(6), respectively. From Equations (28) and (31), y and i,
can be calculated as

y = arcsin (sin py sin (A=f)/sin p2), 0° < y < 90° (36)

cos o, cot Py - sin (A-f) cos (a=f) cot y sin Py

i, = arcos 5 s (37)
cos pq cot p, + cos (r=f) sin Py

0 < 1

< 2<l80°,

and ¢ can be calculated from Equation (22).
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Substituting values for AVl, Pis Py v, I and 12 back in Equa-
tions (33) and (35), values for Biz/apl and aiz/af can be cal-

culated and checks for optimality can be made. Depending on
these values, new values for Py and f can be obtained by a

recursive technique such that 312/301 and aig/af are both

sufficiently close to zero.

GENERALIZATIONS

It will now be shown that the equations which have
been developed for the acute spherical triangle of Figure 1
are valid for all values of 12, A, and ¢. General values of

X and ¢ are illustrated by Cases 2, 3, and 4 of Figures 5a and
5b. Figure 5a shows the two cases where (A-f) is positive,
and Figure 5b shows the two cases for which (A-f) is negative.
Case #1 and Case #3 place the spacecraft into the same lunar
parking orbit, the only difference being that the second burn
cccurs half an orbit later in Case #3; inspection 1indicates
that the optimum values of p, and |p2| are the same for both

cases. This same relationship holds between Case #2 and Case
#4. Hence, the equations which were developed for Case #1
[(A-f) > 0 and p, > 0] need only be validated for Case #2-

[(x-f) < 0 and Py < 0] to be completely general.

For the minimum AVT problem, ¢ is not involved in

the solution and ¢ is determinable and unambiguous over the.
range 0° < ¢ < 180° from the arctan function of Equation (22).
Notice that negative values of {(i-f) result in a sign change
in 0y (Equation (23)). Thus for the minimum AV, problem, |

Case #2 is distinguishable by the sign of (i-f).

For the maximum accessibility problem, Ps must take

its sign from (A-f), ¢ must be placed in the second guadrant
(Equation (36)) if (A-f) < 0, and the quadrant of i, is deter-

minable and unambiguous from the arccos function (Equation (37)).
It may aid the reader to note that the second plane
change is always made in a manner which increases the inclina-
tion of the orbital plane. Any other maneuver would be non-
optimum. Thus, the direction of the second plane change 1is
uniquely determined by the sign of (x-f).
Figures 5a and 5b show only cases where Py and 12
are positive (measured counter-clockwise). The cases where Py
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and i2 are negative are mirror images about the a-plane in

Figures 5a and 5b. The equations which have been developed
remgin unchanged when i2 and p, are negative and are so treated

in the trignometric formulae. It should be noted that negative
values of p, are uniquely associlated with negative i2.

QUANTITATIVE RESULTS FROM THE MINIMUM AVT PROBLEM

Figure 6 illustrates the potential AV savings inherent
in the two burn deboost; 1t presents AVT as a functlon of x and

12 for the one burn deboost; the optimum two burn deboost; and,
for comparison, the two burn deboost for which the first burn

is constrained to occur at perilune. For all calculations, VH

was assumed as 8300 fps and V., as 5300 fps. An initial inspec-

C
tion of the figure indicates that constraining the first burn
to occur at perilune generally incurs significant costs for
values of 12 greater than about 4° and that the additional

complexity involved in optimizing on f is worthwhile.

The major point to be drawn from Figure 6 is the
comparison between the one burn and two burn deboost. Rela-
tively, the larger savings are realized from cases of small

i2 and x» > 10°. Of course, the two burn technique results in

3
significant economies for large values of i,

)

but here the

<
relative efficiencies begin at about x» = 25°. As the figure
shows, the savings are quite sensitive to i; that 1is, the
two burn deboost is particularly appropriate where ) exceeds
15°., Because perilune on free return trajectories occurs
near 180° selenographic longitude, large values (greater than
15°) of A will be most prevalent for lunar landing sites
situated near 0° longitude with latitudes on the order of 10°.
(CSM orbital plane change requirements constrain the lunar
parking orbit to azimuths near 270° at the lunar landing site.)
Hence, this analysis gives further verification that the greatest
propellant savings from this two burn deboost will occur for
landing sites near 0° longitude.

SUMMARY

Analytic solutions to the optimum "two burn” deboost
into lunar parking orbit have been developed. For this par-
ticular two burn technique, the first burn transfers (with a
plane change) from the lunar approach hyperbola to an inter-
mediate circular lunar parking orbit and the second burn
transfers to the final required lunar parking orbit by means
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of the appropriate plane change. The equations required for
optimization are developed for two general cases: the minimum
total AV needed to reach a specified lunar parking orbit and
the maximum lunar accessibility available from a fixed AV.

The optimization is two dimensional in that both the optimum
point of transfer from the approach hyperbola and the optimum
distribution of plane change between the two burns are deter-
mined. By necessity, one additional iteration loop 1s required
as compared with the single burn technique; however, this added
iteration is 1n the nature of an "inner loop" and additional
computation time 1s commensurate. For the minimum total AV
problem an iferative technique is described which i1s based on
the orbital geometry and equations involved.

Finally, quantitative results are presented which
reaffirm that the greatest efficiencies from this two burn
technique occur for lunar landing sites in the central region
(near 0° longitude).
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TABLE I

Glossary of Symbols

semi-major axis of lunar approach hyperbola
eccentricity of lunar approach hyperbola
true anomaly of first burn

inclination of the final orbit plane to the
hyperbolic approach plane

velocity on the circular lunar parking orbit

velocity on lunar approach hyperbola at first
burn (circular parking orbit altitude)

AV required for first burn

AV required for second burn

total AV required for two burn deboost
plane of lunar approach hyperbola
lunar orbit plane after first burn

lunar parking orbit plane affer second burn -
desired final orbit plane

flight path angle at first burn
plane change during first burn
plane change during second burn

great circle angle from first burn to second
burn measured in the Blmplane

true anomaly of node between the o-plane and
the Bz—plane

great circle angle from the a-plane/sg—plane node
to the Bl—plane/82=plane node
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FIGURE | - SPHERICAL GEOMETRY OF THE TWO BURN DEBOOST

FIGURE 2 - GEOMETRY OF THE FIRST BURN
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FIGURE 3 - GEOMETRY OF THE SECOND BURN
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FIGURE 4a - TWO BURN DEBOOST MORE EFFICIENT
THAN ONE BURN DEBOOST
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FIGURE 4b - OPTIMUM TWO BURN DEBOOST DEGENERATES
TO SINGLE BURN

FIGURE 4 - SCHEMATIC REPRESENTATION OF THE FUNCTIONAL NATURE OF
Ny, f, AND \
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